81 research outputs found

    Polyurea-Functionalized Multiwalled Carbon Nanotubes

    Get PDF
    An in situ polycondensation approach was applied to functionalize multiwalled carbon nanotubes (MWNTs), resulting in various linear or hyperbranched polycondensed polymers [e.g., polyureas, polyurethanes, and poly(urea-urethane)-bonded carbon nanotubes]. The quantity of the grafted polymer can be easily controlled by the feed ratio of monomers. As a typical example, the polyurea-functionalized MWNTs were measured and characterized in detail. The oxidized MWNTs (MWNT-COOH) were converted into acyl chloride-functionalized MWNTs (MWNT-COCl) by reaction with neat thionyl chloride (SOCl2). MWNT-COCl was reacted with excess 1,6-diaminohexane, affording amino-functionalized MWNTs (MWNT-NH2). In the presence of MWNT-NH2, the polyurea was covalently coated onto the surfaces of the nanotube by in situ polycondensation of diisocyanate [e.g., 4,4‘-methylenebis(phenylisocyanate)] and 1,6-diaminohexane, followed by the removal of free polymer via repeated filtering and solvent washing. The coated polyurea content can be controlled to some extent by adjusting the feed ratio of the isocyanato and amino groups. The structure and morphology of the resulting nanocomposites were characterized by FTIR, NMR, Raman, confocal Raman, TEM, EDS, and SEM measurements. The polyurea-coated MWNTs showed interesting self-assembled flat- or flowerlike morphologies in the solid state. The signals corresponding to that of the D and G bands of the carbon nanotubes were strongly attenuated after polyurea was chemically tethered to the MWNT surfaces. Comparative experiments showed that the grafted polymer species and structures have a strong effect on the Raman signals of polymer-functionalized MWNTs

    Multilaboratory assessment of Epstein-Barr virus serologic assays: the case for standardization

    Get PDF
    IgA antibodies targeting Epstein-Barr virus (EBV) have been proposed for screening for nasopharyngeal carcinoma (NPC). However, methods differ, and the antigens used in these assays differ considerably between laboratories. To enable formal comparisons across a range of established EBV serology assays, we created a panel of 66 pooled serum samples and 66 pooled plasma samples generated from individuals with a broad range of IgA antibody levels. Aliquots from these panels were distributed to six laboratories and were tested by 26 assays measuring antibodies against VCA, EBNA1, EA-EBNA1, Zta, or EAd antigens. We estimated the correlation between assay pairs using Spearman coefficients (continuous measures) and percentages of agreement (positive versus negative, using predefined positivity cutoffs by each assay developer/manufacturer). While strong correlations were observed between some assays, considerable differences were also noted, even for assays that targeted the same protein. For VCA-IgA assays in serum, two distinct clusters were identified, with a median Spearman coefficient of 0.41 (range, 0.20 to 0.66) across these two clusters. EBNA1-IgA assays in serum grouped into a single cluster with a median Spearman coefficient of 0.79 (range, 0.71 to 0.89). Percentages of agreement differed broadly for both VCA-IgA (12% to 98%) and EBNA1-IgA (29% to 95%) assays in serum. Moderate-to-strong correlations were observed across assays in serum that targeted other proteins (correlations ranged from 0.44 to 0.76). Similar results were noted for plasma. We conclude that standardization of EBV serology assays is needed to allow for comparability of results obtained in different translational research studies across laboratories and populations

    A systematic review and meta-analysis to determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero.

    Get PDF
    OBJECTIVES: This systematic review was undertaken to define the diagnostic performance of in utero MR (iuMR) imaging when attempting to confirm, exclude or provide additional information compared with the information provided by prenatal ultrasound scans (USS) when there is a suspicion of foetal brain abnormality. METHODS: Electronic databases were searched as well as relevant journals and conference proceedings. Reference lists of applicable studies were also explored. Data extraction was conducted by two reviewers independently to identify relevant studies for inclusion in the review. Inclusion criteria were original research that reported the findings of prenatal USS and iuMR imaging and findings in terms of accuracy as judged by an outcome reference diagnosis for foetal brain abnormalities. RESULTS: 34 studies met the inclusion criteria which allowed diagnostic accuracy to be calculated in 959 cases, all of which had an outcome reference diagnosis determined by postnatal imaging, surgery or autopsy. iuMR imaging gave the correct diagnosis in 91 % which was an increase of 16 % above that achieved by USS alone. CONCLUSION: iuMR imaging makes a significant contribution to the diagnosis of foetal brain abnormalities, increasing the diagnostic accuracy achievable by USS alone. KEY POINTS: • Ultrasound is the primary modality for monitoring foetal brain development during pregnancy • iuMRI used together with ultrasound is more accurate for detecting foetal brain abnormalities • iuMR imaging is most helpful for detecting midline brain abnormalities • The moderate heterogeneity of reviewed studies may compromise findings
    • …
    corecore